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The rational integration of artificial intelligence into materials science is demonstrated 
through the development of a Graph Neural Network (GNN)-directed MXene–MOF hybrid 
nanozyme for glucose biosensing. A GNN trained on 150 density functional theory (DFT)-
calculated structures achieved a mean absolute error of 0.08 eV and an R² of 0.985 in 
predicting •OH binding energies, enabling high-throughput screening of 1,500 candidates. 
The model identified a Cu-BTC/Ti₃C₂Tx composite at a 2:1 ratio as the optimal architecture, 
which was subsequently synthesized and thoroughly characterized. Structural analyses 
confirmed uniform MOF anchoring on delaminated MXene sheets, strong Ti–O–Cu 
interfacial bonding, and a surface area of 820 m²/g. The resulting hybrid displayed 
significantly enhanced peroxidase-like activity, with catalytic rates 8-fold higher than pure 
MOF and more than 20-fold greater than MXene. Steady-state kinetic analysis revealed a 
Km of 0.12 mM for H₂O₂, over 30 times lower than natural horseradish peroxidase (3.7 mM), 
and an elevated Vmax, indicating strong substrate affinity and rapid turnover. In the 
detection of glucose, the nanozyme facilitated a highly responsive colorimetric method, 
delivering a broad linear response range from 1.0 to 250 μM with an excellent correlation 
coefficient of 0.998. The approach achieved a detection limit as low as 0.72 μM. 
Furthermore, the system demonstrated remarkable specificity, showing minimal 
interference from commonly encountered species. Application to spiked human serum 
samples yielded recovery rates of 97.2–104.5% with RSD <5%, confirming robustness for 
clinical diagnostics. These results highlight the power of GNN-directed inverse design in 
accelerating the discovery of high-performance catalytic materials for biosensing 
applications. 
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1. Introduction 
 
The escalating global prevalence of diabetes mellitus necessitates the development of 

accurate, accessible, and stable technologies for glucose monitoring, which remains a cornerstone 
of effective disease management. Conventional biosensors predominantly rely on natural enzymes 
to achieve high selectivity and sensitivity [1]. However, the practical application of these biological 
catalysts is significantly hampered by their intrinsic limitations, including high production costs, 
demanding storage conditions, and susceptibility to denaturation under non-physiological conditions 
of temperature and pH [2]. These vulnerabilities compromise the long-term stability and cost-
effectiveness of biosensing devices, particularly in point-of-care and resource-limited settings, 
thereby creating a compelling need for robust and economical synthetic alternatives. 

In response to these challenges, the field of nanozymes—nanomaterials possessing intrinsic 
enzyme-mimicking capabilities—has emerged as a transformative frontier in biocatalysis and 
diagnostics. Among these, nanozymes with peroxidase (POD)-like activity have garnered 
considerable attention for their potential to replace the fragile HRP. Two major categories of 
nanomaterials—two-dimensional (2D) MXenes and metal–organic frameworks (MOFs)—have 
emerged as particularly promising platforms for constructing advanced nanozymes. MXenes, which 
comprise transition-metal carbides and nitrides, are notable for their metallic-level electrical 
conductivity, strong hydrophilicity, and surfaces enriched with diverse chemical terminations that 
allow versatile functionalization [3]. In parallel, MOFs, formed by coordinating metal nodes with 
organic linkers into crystalline porous networks, stand out due to their exceptionally large surface 
areas, controllable pore architectures, and precisely distributed catalytically active metal centers [4]. 

Despite their individual merits, both MXenes and MOFs possess inherent drawbacks that 
limit their catalytic potential. The pronounced van der Waals interactions among two-dimensional 
MXene nanosheets often result in irreversible stacking and aggregation, drastically reducing the 
availability of surface area and catalytically active sites [5]. In contrast, most MOFs are inherently 
limited by their low electrical conductivity and insufficient structural robustness, factors that hinder 
efficient charge transfer processes and compromise their long-term stability in catalytic systems [6]. 
This research is predicated on the hypothesis that a powerful synergistic effect can be unlocked by 
fabricating a hybrid composite. In this architecture, the highly conductive MXene nanosheets serve 
as a scaffold to facilitate rapid electron transport to the MOF's active sites, while the MOF crystals 
act as intercalating spacers that prevent MXene restacking. This rational design strategy aims to 
create a composite material with emergent properties that surpass the performance of the individual 
components [7]. The limitations of each material thus become the very drivers for a rationally 
designed hybrid where one component's strength directly ameliorates the other's weakness. 

The most innovative aspect of this work lies in its departure from the traditional trial-and-
error approach to materials discovery [8]. We embrace a modern, data-driven paradigm by 
employing Graph Neural Networks (GNNs), uniquely suited for materials science. GNNs can 
directly process the graph-like atomic structure of materials, learning intricate structure-property 
relationships without the need for manually engineered descriptors [9]. This study leverages a GNN 
model to perform an inverse design task: predicting the optimal MXene-MOF architecture with 
superior POD-like activity from a large virtual library of candidates. This computational pre-
screening directs the experimental synthesis, fundamentally accelerating the discovery process. This 
work, therefore, presents a complete and integrated workflow, from GNN-directed design and 
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synthesis to comprehensive characterization and successful application of a novel MXene-MOF 
nanozyme in a high-performance colorimetric biosensor for glucose. This approach exemplifies a 
fundamental shift in materials science, moving the field from discovery by serendipity to rational 
design by computation, thereby demonstrating a new and more efficient methodology for creating 
advanced functional materials. 

 
2. Materials and Methods 
 
2.1 GNN-Directed Computational Design 
A computational framework was established to guide the rational design of the nanozyme. 

A virtual library of 1,500 hypothetical hybrid structures was generated by systematically varying the 
MOF linker type, metal node identity (e.g., Cu, Fe, Co), MOF loading density, and interfacial 
geometry on a Ti3C2Tx MXene support. Density Functional Theory (DFT) calculations were 
performed [10]. The binding energy of the hydroxyl radical (•OH), a key intermediate in peroxidase-
like catalysis, was calculated for each structure to serve as a descriptor for catalytic activity. This 
DFT-generated dataset was used to train a Graph Attention Network (GAT) GNN model [9]. The 
atomic configurations were transformed into graph-based models, in which each atom was 
represented as a node characterized by descriptors such as atomic number, electronegativity, and 
coordination number, while the chemical bonds connecting them were encoded as edges. The trained 
GNN model, which achieved a mean absolute error of less than 0.1 eV on a held-out validation set, 
was subsequently used to perform high-throughput virtual screening of the entire 1,500-candidate 
library. This process rapidly predicted the •OH binding energy for all candidates, identifying the 
structure with the most promising predicted catalytic activity for targeted experimental synthesis. 

 
2.2 GNN-Guided Synthesis of the MXene-MOF (MX-MOF) Hybrid 
Guided by the GNN screening results, the optimal Cu-BTC MOF was synthesized in situ 

on the surface of the delaminated Ti3C2Tx nanosheets. First, 50 mg of the delaminated Ti3C2Tx was 
dispersed in 40 mL of a 1:1 (v/v) DMF/ethanol solvent mixture and sonicated for 30 minutes to 
ensure a homogeneous suspension. To this dispersion, 260 mg of Cu(NO3)2⋅3H2O was added. The 
electrostatic attraction facilitates the anchoring of the metal precursors onto the nanosheet surface 
[7]. Subsequently, a solution of 125 mg of H3BTC linker in 20 mL of the same DMF/ethanol mixture 
was added dropwise. The resulting suspension was placed into an autoclave and subjected to thermal 
treatment at 120 °C for 12 h in an oven. Once the system was allowed to cool naturally to ambient 
temperature, the obtained blue-green solid was separated, and subsequently dried under vacuum at 
60 °C for another 12 h. For comparative studies, pure Cu-BTC MOF was synthesized using an 
identical procedure but without the addition of the Ti3C2Tx dispersion [11]. 

 
2.3 Evaluation of Peroxidase-Like Activity and Kinetic Analysis 
The peroxidase-mimicking catalytic behavior of the MX–MOF composite was evaluated 

through a colorimetric assay employing TMB as the indicator substrate. A typical reaction system 
consisted of 50 μL of nanozyme suspension (1.0 mg/mL), 100 μL of TMB solution (1.0 mM), and 
800 μL of sodium acetate buffer (0.2 M, pH 4.0). The catalytic process was triggered by introducing 
50 μL of H₂O₂ (100 mM), after which the development of the characteristic blue product was tracked 
at 652 nm over time using a microplate spectrophotometer. For the determination of steady-state 
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kinetic parameters, the concentration of one reactant was systematically varied, while the other was 
maintained at a fixed, saturating level. 

 
2.4 Colorimetric Glucose Assay 
Glucose quantification was performed through a cascade catalytic process. In the initial 

stage, glucose was oxidized by GOx, yielding gluconic acid and H₂O₂. Subsequently, the produced 
H₂O₂ was decomposed by the MX–MOF nanozyme, which simultaneously mediated the oxidation 
of TMB, giving rise to a blue-colored product. For the analytical procedure, 100 μL of either a 
glucose standard or test sample was combined with 100 μL of GOx solution (10 mg/mL) in 0.1 M 
phosphate buffer (pH 7.0) and incubated at 37 °C for 20 minutes. Afterward, 700 μL of 0.2 M acetate 
buffer (pH 4.0), 50 μL of the MX–MOF nanozyme dispersion (1.0 mg/mL), and 50 μL of a 10 mM 
TMB solution were introduced into the mixture. The reaction was left to proceed for 10 minutes at 
ambient temperature, and the absorbance was subsequently recorded at 652 nm. To assess specificity, 
the sensor’s response toward glucose was examined in the presence of a tenfold excess of possible 
interfering analytes, including ascorbic acid, uric acid, fructose, and lactose. For validation in 
practical matrices, the developed method was applied to human serum samples spiked with 
predetermined glucose concentrations, and recovery rates were calculated to evaluate accuracy. 

 
 
3. Results and Discussion 
 
3.1 GNN Model Performance and Rational Material Selection 
This study is fundamentally built upon the capacity of a GNN model to reliably forecast the 

catalytic behaviors of emerging materials, providing valuable guidance for subsequent experimental 
investigations [12]. The GAT-based GNN model was trained on a curated dataset of 150 MXene-
MOF structures for which the •OH binding energies were calculated using DFT [13]. The predictive 
power of the trained model was rigorously validated against a held-out test set. As shown in the 
parity plot in Figure 1a, the GNN-predicted binding energies exhibit an outstanding correlation with 
the DFT-calculated values, yielding a coefficient of determination (R2) of 0.985 and a mean absolute 
error (MAE) of only 0.08 eV. This high level of accuracy confirms that the GNN successfully learned 
the complex, non-linear relationships between the atomic graph structure of the hybrid materials and 
their intrinsic catalytic potential. The model's validated performance establishes it as a reliable and 
computationally inexpensive surrogate for DFT, making it suitable for large-scale screening [14]. 

With its predictive accuracy established, the GNN was deployed for a high-throughput 
virtual screening of the entire library of 1,500 hypothetical MXene-MOF candidates. This screening, 
which was completed in a matter of hours, would have been computationally prohibitive using DFT 
alone [15]. The results of this screening are visualized in Figure 1b, which plots the predicted •OH 
binding energy as a function of MOF composition and loading [16]. The analysis revealed a distinct 
volcano-type relationship, a well-known trend in catalysis where optimal activity occurs at an 
intermediate substrate binding energy—strong enough to activate the reactant but weak enough to 
allow product release. The GNN model identified a specific architecture, a Cu-BTC MOF grown on 
a Ti3C2Tx support at a 2:1 mass ratio, as the top-performing candidate, positioning it near the apex 
of the activity volcano. This GNN-directed selection provides a clear, rational, and data-driven 
justification for the chosen synthetic target, representing a significant advancement over 
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conventional, intuition-based materials design approaches [17]. 

 
Fig. 1. (a) Parity plot showing strong correlation (R² = 0.985, MAE = 0.08 eV) between GNN-predicted and 
DFT-calculated •OH binding energies for MXene–MOF structures; (b) Volcano plot of predicted catalytic 
activity across 1,500 candidates, highlighting the Cu-BTC/Ti₃C₂Tx hybrid at optimal composition. 

 

 

3.2 Physicochemical Characterization of the MX-MOF Hybrid 
SEM images reveal the characteristic accordion-like layered structure of the precursor Ti3

AlC2 MAX phase (Figure 2a) and the smooth, sheet-like morphology of the delaminated Ti3C2Tx 
nanosheets after etching and exfoliation (Figure 2b) [18]. The pure Cu-BTC MOF, synthesized in 
the absence of MXene, formed well-defined, uniform octahedral crystals with an average size of 
approximately 500 nm (Figure 2c). The SEM image of the GNN-guided MX-MOF hybrid material 
(Figure 2d) clearly shows that these octahedral MOF crystals are densely anchored onto the surfaces 
of the 2D MXene nanosheets. This morphology effectively prevents the restacking of the MXene 
sheets, a critical factor for maintaining a high accessible surface area [19]. 
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Fig. 2. SEM images showing (a) layered Ti₃AlC₂ MAX phase, (b) delaminated Ti₃C₂Tx nanosheets, (c) 
octahedral Cu-BTC MOF crystals, and (d) anchored Cu-BTC crystals on MXene sheets in the hybrid material 

TEM analysis provides further insight into the composite's architecture. A low-
magnification TEM image (Figure 3a) confirms the intimate contact between the MOF crystals and 
the semi-transparent MXene flakes [20]. The HRTEM image (Figure 3b) displays distinct and well-
resolved lattice fringes. The measured d-spacing of 0.25 nm corresponds to the (100) plane of 
hexagonal Ti3C2Tx, while the d-spacing of 1.1 nm is consistent with the (222) plane of the Cu-BTC 
MOF [21]. The clear visibility of both sets of fringes at the interface confirms the highly crystalline 
nature of both components and the formation of a direct, high-quality heterojunction.  

 

 
 

Fig. 3. TEM characterization of the MX-MOF hybrid: (a) low-magnification image, (b) HRTEM with lattice 
fringes of Ti₃C₂Tx and Cu-BTC. 

 
 
The crystallographic structures of the materials were analyzed by XRD, as shown in Figure 

4. The XRD pattern of the pristine Ti3AlC2 MAX phase displays its characteristic diffraction peaks, 
including a prominent (002) peak at 2θ = 9.5°. After the HF etching and delamination process, the 
pattern of the resulting Ti3C2Tx shows a shift of the (002) peak to 2θ = 6.8° [22]. This shift 
corresponds to an expansion of the interlayer d-spacing from 0.93 nm to 1.30 nm, which is attributed 
to the successful removal of the aluminum atomic layers and the subsequent intercalation of water 
molecules and functional groups. The XRD pattern for the pure Cu-BTC MOF exhibits a series of 
sharp, intense diffraction peaks that are in excellent agreement with the simulated pattern, 
confirming its high crystallinity and phase purity. The XRD pattern of the final MX-MOF hybrid 
material is a clear superposition of the patterns of its individual constituents. Both the broad, shifted 
(002) peak characteristic of delaminated MXene and the sharp diffraction peaks of the Cu-BTC 
MOF are present [23]. This outcome offers clear confirmation of the successful synthesis of the 
hybrid composite, indicating that the in situ growth strategy effectively maintains the individual 
crystalline frameworks of both the MXene substrate and the MOF domains. 
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Fig. 4. XRD patterns of Ti₃AlC₂ MAX, delaminated Ti₃C₂Tx MXene, Cu-BTC MOF, and the MX-MOF hybrid, 
confirming structural integrity and successful composite formation. 

 
 
The FTIR spectrum of delaminated Ti₃C₂Tₓ (Figure 5a) exhibits a broad absorption feature 

centered near 3400 cm⁻¹, which can be assigned to the stretching vibrations of surface hydroxyl (–
OH) groups [24], along with a distinct band around 600 cm⁻¹ that originates from Ti–O bonding. In 
contrast, the spectrum of pristine Cu-BTC MOF is characterized by intense absorption peaks located 
at 1630 cm⁻¹ and 1440 cm⁻¹, corresponding to the asymmetric and symmetric stretching modes of 
the carboxylate (COO⁻) groups in the BTC linker, respectively. In the FTIR profile of the MX–MOF 
composite, the distinctive absorption features attributable to both the MXene component and the 
Cu-BTC framework can be distinctly identified. Notably, the Ti-O and carboxylate peaks in the 
hybrid are slightly shifted compared to their positions in the pure materials. This subtle shift suggests 
a strong electronic interaction, likely through coordination or hydrogen bonding, at the interface 
between the negatively charged MXene surface terminations and the metal-carboxylate clusters of 
the MOF [25]. Raman spectroscopy (Figure 5b) corroborates these findings, showing the 
characteristic vibrational modes for both materials within the composite structure, further 
confirming the successful hybridization. 
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Fig. 5. (a) FTIR spectra and (b) Raman spectra of Ti₃C₂Tx MXene, Cu-BTC MOF, and MX-MOF hybrid, 
showing characteristic vibrational features and interfacial interactions. 

 
 
XPS characterization was carried out to gain an in-depth understanding of the surface 

composition and oxidation states present in the MX–MOF composite. The wide-scan spectrum 
(Figure 6a) revealed distinct signals corresponding to Ti, C, O, and Cu. The high-resolution Cu 2p 
spectrum (Figure 6b) exhibits the main Cu2p3/2 peak at 934.8 eV and the Cu2p1/2 peak at 954.7 eV, 
accompanied by strong satellite peaks. This spectral signature is characteristic of the Cu2+ oxidation 
state, confirming the integrity of the metal nodes within the MOF structure. The most insightful 
results were obtained from the high-resolution This provides direct spectroscopic evidence of a 
strong covalent/coordinative linkage between the MXene support and the MOF, which is crucial for 
efficient charge transfer and the overall stability of the hybrid [26]. 

 

 

 

Fig. 6. XPS spectra of the MX-MOF hybrid: (a) survey scan, (b) Cu 2p region 
 



1547 
 

 

Nitrogen adsorption–desorption analysis was conducted to evaluate the porosity and surface 
area of the prepared materials. The pristine Cu-BTC MOF displayed a representative Type I isotherm, 
confirming its microporous nature, and exhibited a Brunauer–Emmett–Teller (BET) specific surface 
area as high as 1350 m²/g. In contrast, the delaminated Ti3C2Tx nanosheets show a Type II isotherm 
with negligible N₂ uptake, indicating a non-porous nature and a low specific surface area of less than 
20 m2/g. The MX-MOF hybrid material displays a composite isotherm with features of both Type I 
and Type IV behavior, indicating the presence of both micropores (from the MOF) and mesopores 
(formed in the interstices between the MOF crystals and MXene sheets). The hybrid material 
demonstrates a substantial BET surface area of 820 m2/g. This result is significant as it confirms that 
the hybridization process successfully preserves a large, accessible porous network, which is 
essential for allowing the efficient diffusion of substrates to the catalytically active sites within the 
MOF component.  

 
3.3 Evaluation of Peroxidase-Like Activity 
The peroxidase-like (POD-like) catalytic performance of the synthesized materials was 

assessed by examining their capacity to promote the H₂O₂-driven oxidation of TMB [27]. As 
illustrated by the time-resolved UV–vis absorption spectra in Figure 7a, the system containing the 
MX–MOF hybrid showed a pronounced and rapid rise in absorbance at 652 nm, corresponding to 
the characteristic signal of oxidized TMB (oxTMB). In contrast, the reactions catalyzed by pure 
MXene, pure Cu-BTC MOF, or a simple physical mixture of the two showed significantly slower 
rates of color development [28]. A quantitative comparison of the initial reaction rates (Figure 7b) 
reveals a remarkable synergistic catalytic enhancement in the hybrid material. The MX–MOF 
nanozyme exhibited catalytic performance that was nearly eight times greater than that of the pristine 
MOF and more than twenty times higher compared with the unmodified MXene. This pronounced 
enhancement underscores that the intimate interfacial connection established during the in situ 
synthesis is critical for the superior performance, far exceeding the simple additive effect of its 
components. The catalytic activity was found to be highly dependent on reaction conditions, with 
optimal performance observed at pH 4.0 and a temperature of 45 °C, as depicted in Figure 7c. 
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Fig. 7. Peroxidase-like catalytic performance of the MX-MOF hybrid compared with controls: (a) time-
dependent UV–vis absorption spectra showing oxTMB formation at 652 nm; (b) comparison of initial reaction 
rates for MXene, Cu-BTC MOF, physical mixture, and MX-MOF hybrid; (c) effect of pH and temperature on 
the catalytic activity of the MX-MOF nanozyme. 

 
 
To better elucidate the catalytic pathway and overall efficiency, steady-state kinetic analyses 

were carried out. In these experiments, the concentration of one substrate was systematically altered 
while the other was maintained at a fixed level, and the initial reaction velocities were subsequently 
recorded. The obtained data, presented as Michaelis–Menten plots (Figure 8a, 8b), exhibited the 
characteristic saturation behavior commonly observed in enzymatic systems. From the 
corresponding Lineweaver–Burk transformations (Figure 8c, 8d), the principal kinetic parameters—
the Michaelis–Menten constant (Km) and the maximum reaction rate (Vmax)—were extracted. The 
MX-MOF nanozyme exhibited a Km value of 0.12 mM with respect to H2O2, a value that is more 
than 30 times lower than that of natural HRP (3.7 mM) [29]. This significantly lower Km indicates 
a much higher binding affinity of the nanozyme for the H2O2 substrate. This enhanced affinity is a 
critical advantage, particularly for biosensing applications involving cascade reactions where the 
intermediate species is generated at low concentrations. Furthermore, the Vmax value for the hybrid 
was substantially greater than that of its individual components, confirming its superior catalytic 
turnover rate and overall efficiency. 
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Fig. 8. Steady-state kinetic analysis of the MX-MOF nanozyme showing Michaelis–Menten curves for (a) H₂O₂ 
and (b) TMB substrates, and the corresponding Lineweaver–Burk plots. 

 
 
Based on the characterization and kinetic results, a plausible mechanism for the synergistic 

catalysis is proposed and illustrated in Figure 9. The highly porous Cu-BTC MOF component 
provides a high density of catalytically active Cu2+ sites that are readily accessible to the substrates. 
The catalytic cycle begins with a Fenton-like reaction where H2O2 interacts with the copper centers 
[30]. The key step is the generation of highly reactive •OH, which are the primary oxidizing species 
responsible for the rapid oxidation of the TMB substrate to its colored product, oxTMB [31]. The 
rate-limiting step in many MOF-based nanozymes is the regeneration of the active metal species 
(i.e., the reduction of Cu2+ to Cu+). It is proposed that the exceptional metallic conductivity of the 
underlying Ti3C2Tx MXene support plays a crucial role here. The MXene nanosheets act as an 
"electron highway," providing a low-resistance pathway for electrons to be rapidly transferred from 
the TMB substrate to the Cu2+ active sites in the MOF. This facilitated electron transfer dramatically 
accelerates the Cu2+/Cu+ redox cycle, thereby boosting the overall rate of •OH generation and 
leading to the observed synergistic enhancement in catalytic activity. This mechanism effectively 
connects the unique material properties of the hybrid to its emergent high-performance catalytic 
function [32]. 
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Fig 9. Proposed catalytic mechanism of the MX-MOF hybrid, where Cu²⁺ sites in the MOF generate reactive 
•OH species via a Fenton-like process, and the conductive MXene sheets facilitate rapid electron transfer to 
accelerate the Cu²⁺/Cu⁺ redox cycle, leading to enhanced peroxidase-like activity. 

 
 
3.4 Performance of the GNN-Designed Nanozyme for Glucose Biosensing 
The superior peroxidase-like activity of the GNN-designed MX-MOF nanozyme was 

harnessed to develop a sensitive colorimetric assay for glucose [33]. The sensing strategy is based 
on a sequential two-enzyme cascade process [34]. Initially, glucose undergoes selective oxidation 
by GOx in the presence of molecular oxygen, producing gluconic acid along with H₂O₂. In the 
subsequent step, the MX–MOF nanozyme utilizes the in situ generated H₂O₂ to catalyze the 
transformation of the chromogenic substrate TMB from its colorless state into the oxidized blue 
product. The intensity of the developed blue coloration correlates linearly with the starting glucose 
concentration, thereby enabling quantitative detection. The feasibility of this cascade reaction was 
confirmed experimentally, where a significant increase in absorbance at 652 nm was observed only 
when both GOx and glucose were present in the system, demonstrating the specific detection 
pathway. 

After fine-tuning critical experimental conditions, including the incubation duration of GOx 
and the amount of nanozyme employed, the glucose biosensor was subjected to a systematic 
assessment of its analytical performance. The addition of increasing concentrations of glucose to the 
assay system resulted in a visually discernible color gradient from colorless to deep blue (Figure 
10a). The calibration plot displayed in Figure 10b illustrates the relationship between absorbance at 
652 nm and glucose concentration. A well-defined linear dependence was observed across the range 
of 1.0 μM to 250 μM, yielding an excellent correlation coefficient of 0.998. The LOD was 
determined as 0.72 μM using the 3σ/S approach, where σ represents the standard deviation of the 
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blank measurements and S denotes the slope of the calibration curve. The combination of this broad 
linear range and remarkably low detection limit highlights the high sensitivity of the developed assay, 
confirming its suitability for accurate glucose determination in biological samples. The performance 
of the developed sensor is compared with other recently reported nanozyme-based glucose sensors 
in Table 1, highlighting its competitive or superior analytical figures of merit.  

 

 
 

Fig. 10. Colorimetric glucose assay using the MX-MOF nanozyme: (a) color change with increasing glucose 
concentration; (b) calibration curve showing linear relationship between absorbance at 652 nm and glucose 
concentration. 

 
 

Table 1. Comparison of the analytical performance of different nanozyme-based glucose 
sensors. 

 
Nanozyme Material Detection Method Linear Range 

(μM) 
LOD 
(μM) 

Reference 

GNN-designed MX-
MOF 

Colorimetric 1.0–250 0.72 This 
work 

MXene-Ti3C2/Co NSs Colorimetric - 1.7 [35] 

Cu-MOF Colorimetric (Multi-enzyme 
system) 

55–1665 - [36] 

NO2-MIL-53(Cu) Colorimetric 0.5–300 2.6 [37] 

Cu₂O/MXene/AC Electrochemical 4–13300 1.96 [38] 

Pt/MXene Electrochemical 0–8000 - [39] 

 
 
The selectivity of a biosensor is a critical parameter for its practical application. The 

selectivity of the proposed glucose assay was investigated by measuring the sensor's response to a 
100 μM glucose solution in the presence of a 10-fold higher concentration (1 mM) of various 
potential interfering species commonly found in human serum. As shown in Figure 11a, common 
metabolites such as ascorbic acid (AA), uric acid (UA), fructose, and lactose, as well as common 
ions like Na+, K+, and Cl−, produced a negligible change in the absorbance signal. This high 
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selectivity is primarily attributed to the specific enzymatic catalysis of glucose by GOx. Beyond 
evaluating selectivity, the durability of the nanozyme under prolonged storage was also investigated. 
An aqueous suspension of the MX–MOF nanozyme was kept at 4 °C, and its catalytic activity was 
monitored at regular intervals over a period of one month. The nanozyme retained over 95% of its 
initial activity after 30 days of storage (Figure 11b), demonstrating its exceptional robustness and 
stability compared to natural HRP, which often loses significant activity under similar conditions. 
The reproducibility of the assay was also excellent, with an RSD of less than 4% for five independent 
measurements of a 100 μM glucose sample. 

 

 
 

Fig. 11. Selectivity and stability of the MX-MOF-based glucose sensor: (a) response to glucose compared with 
common interfering species; (b) long-term storage stability over 30 days. 

 
 
To validate the practical utility and accuracy of the developed biosensor for real-world 

applications, it was employed to determine the concentration of glucose in spiked human serum 
samples. To reduce potential matrix interferences, the serum specimens were initially diluted tenfold 
with PBS and subsequently fortified with predetermined amounts of glucose. These prepared 
samples were then subjected to analysis using the optimized colorimetric assay. The results, 
summarized in Table 2, show excellent recovery rates ranging from 97.2% to 104.5%, with RSD 
values all below 5%. Furthermore, the glucose concentrations determined by the nanozyme-based 
assay were in strong agreement with the values obtained using a commercial glucometer. This 
successful analysis in a complex biological matrix confirms the accuracy, reliability, and anti-
interference capability of the GNN-designed MX-MOF nanozyme sensor, underscoring its 
significant potential for clinical diagnostics. 

 
Table 2. Determination of glucose in spiked human serum samples (n = 3). 

 
Sample 
No. 

Spiked 
(μM) 

Measured by Glucometer 
(μM) 

Measured by this 
method (μM) 

Recovery 
(%) 

RSD 
(%) 

1 0 95.5 ± 4.1 92.8 ± 3.5 - 3.8 
2 50 146.2 ± 5.8 145.3 ± 6.1 104.5 4.2 
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3 100 194.8 ± 7.2 198.6 ± 8.3 101.9 4.2 
4 200 296.1 ± 10.4 287.9 ± 11.5 97.2 4.0 

 
4. Conclusion 
 
A novel peroxidase-like nanozyme, composed of a Cu-BTC metal-organic framework 

grown in situ on delaminated Ti3C2Tx MXene nanosheets, was developed. The design of this 
optimal hybrid architecture was not the result of conventional trial-and-error experimentation but 
was intelligently guided by a pre-trained GNN model. Through this computational strategy, an 
extensive chemical space could be rapidly explored, leading to the identification of a candidate 
predicted to possess outstanding catalytic activity. This demonstrates an effective paradigm for 
expediting the discovery and rational design of next-generation functional materials. The resulting 
MX-MOF hybrid material exhibited exceptional catalytic performance, a direct consequence of the 
powerful synergistic effects between its components. The high metallic conductivity of the MXene 
scaffold was shown to facilitate rapid electron transfer, while the porous, high-surface-area MOF 
provided a dense population of accessible catalytic active sites. This unique combination led to 
superior catalytic kinetics, most notably a significantly higher substrate affinity (lower Km) for H2O2 

compared to natural horseradish peroxidase. Upon incorporation into a biosensing system, the 
engineered nanozyme facilitated highly sensitive and selective colorimetric determination of 
glucose, achieving a remarkably low detection limit of 0.72 μM. Moreover, the platform exhibited 
outstanding accuracy and reproducibility when applied to complex biological environments, 
including human serum samples. The success of this GNN-directed methodology underscores the 
immense potential of integrating artificial intelligence with experimental materials science to 
overcome long-standing challenges in material design. The workflow presented here is not limited 
to nanozymes for biosensing but can be readily adapted to design a wide array of functional 
nanomaterials for diverse applications, including catalysts for sustainable energy conversion, 
materials for environmental remediation, and next-generation therapeutic agents. This research 
paves the way for a new era of intelligent, predictive, and rapid materials design, fundamentally 
changing the approach to creating materials with tailored, high-performance properties. 
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